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Abstract : Phytochemicals, a diverse class of bioactive compounds derived 

from plants, play a pivotal role in modern drug discovery and natural product 

research. The ability to accurately predict their biological activities based on 

chemical structure is essential for enhancing screening efficiency and 

minimizing experimental costs. This review presents an overview of state-of-

the-art computational strategies employed to forecast the pharmacological 

potential of phytochemicals. Key methodologies discussed include quantitative 

structure–activity relationship (QSAR) modeling, molecular docking, 

cheminformatics tools, and machine learning algorithms. Emphasis is placed 

on the use of molecular descriptors and structural fingerprints for functional 

classification of phytochemicals into categories such as antioxidant, anticancer, 

antimicrobial, and anti-inflammatory agents. The review also addresses current 

challenges, including limitations in data availability, issues of model 

interpretability, and the critical need for experimental validation. With ongoing 

advancements in artificial intelligence and big data analytics, predictive 

modeling continues to evolve, offering transformative opportunities for the 

identification and development of plant-derived therapeutics. Integrating 

computational predictions with empirical research holds significant promise for 

accelerating the discovery of novel bioactive compounds. 

 

Keywords: phytochemicals, biological activities, QSAR, machine learning, 

drug discovery. 

 

Introduction 

Medicinal plants, commonly referred to as medicinal herbs, have been 

used in traditional healing systems since prehistoric times, including Indian 

Ayurveda, Traditional Chinese Medicine, and African herbal practices [1]. Their 

therapeutic effects are primarily attributed to phytochemicals—biologically 

active compounds synthesized and stored as secondary metabolites [2]. These 

metabolites, which accumulate in different plant parts such as roots, leaves, 

stems, flowers, and bark, serve ecological functions such as protection against 

pathogens, abiotic stress, and ultraviolet radiation, without impeding the plant's 

growth or reproduction [5]. Due to their evolutionary refinement, these 

compounds often display high structural diversity and specific biological 

activities, rendering them attractive for medicinal research [3,4]. 

However, phytochemicals are generally less accessible in pure form 

compared to synthetic alternatives. As a result, systematic strategies have 

been developed to investigate the phytochemical composition of medicinal 

plants. These include the classification of chemical groups and identification of 
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active constituents through additive model analysis and other computational 

techniques [6]. Many phytochemicals have demonstrated a broad spectrum of 

bioactivities, including antioxidant, anti-inflammatory, anticancer, and 

antibacterial properties, further underscoring their pharmaceutical relevance 

[6]. Advancements in computational tools have accelerated the exploration of 

structure–activity relationships among natural products. A growing body of 

research demonstrates clear associations between the chemical structure of 

natural molecules—such as the configuration of the carbon backbone, the 

position and type of functional groups, and the characteristics of side chains—

and their biological activities. These relationships are increasingly modeled 

using in silico techniques such as Quantitative Structure–Activity Relationship 

(QSAR) analysis, which quantitatively links chemical structure to 

pharmacological effect [7,8]. To support these computational endeavors, 

several phytochemical databases have been developed to consolidate 

chemical, biological, and experimental information, enhancing the accessibility 

and reproducibility of data for drug discovery efforts [7].  

This mini-review provides an overview of key computational methods for 

predicting the biological activity of phytochemicals, focusing on QSAR 

modeling, molecular descriptors, cheminformatics, and machine learning. It 

also discusses current limitations, including data quality, model interpretability, 

and the necessity for experimental validation, while highlighting emerging 

opportunities driven by artificial intelligence and big data analytics. 

Biological Activities  

Anticancer Activity 

Medicinal plants have long been recognized as a valuable source of 

bioactive compounds with anticancer potential. Beyond their antitumor efficacy, 

these phytochemicals offer several advantages, including low toxicity, 

affordability, and widespread availability [9]. Cancer is a multifactorial disease 

characterized by a complex interplay of physical, environmental, metabolic, 

chemical, and genetic factors that contribute to its initiation and progression. A 

wide range of polyphenolic compounds—such as flavonoids, phenolic acids, 

anthocyanidins, and tannins—has demonstrated substantial pharmacological 

activity, particularly in modulating cancer-related pathways [10]. Recent studies 

underscore the therapeutic potential of bioactive compounds present in 

commonly used herbs, noting their ability to exert antioxidant, anti-

inflammatory, antimicrobial, and anticancer effects when consumed in 

appropriate doses. Empirical research and traditional medical practices both 

support the efficacy of medicinal plants in the development of anticancer 

agents. Several phytochemicals have been successfully integrated into clinical 

applications, either in their natural forms or as chemically modified derivatives. 

Notable examples include vinblastine, vincristine, podophyllotoxin, paclitaxel 

(Taxol), and camptothecin—compounds derived from plants that have become 

standard components in modern chemotherapeutic regimens [11]. This review 
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explores these compounds’ therapeutic effects and mechanisms of action 

while also addressing the challenges and limitations associated with their use, 

such as bioavailability, standardization, and regulatory hurdles [12]. 

Antiviral Activity 

An increasing body of evidence supports the antiviral properties of various 

plant-derived compounds. For instance, rutin, a flavonoid glycoside found in 

numerous plant species, has demonstrated significant efficacy against avian 

influenza viruses [13]. Quercetin, a metabolite of rutin, is widely distributed in 

plants and has shown inhibitory activity against a range of viruses, including 

rhinovirus, dengue virus type-2, herpes simplex virus type 1 (HSV-1), 

poliovirus, adenovirus, and highly pathogenic influenza strains [14]. 

Comparative studies of several flavonoids—including epigallocatechin gallate 

(EGCG), epicatechin gallate (ECG), quercetin, daidzein, fisetin, baicalein, 

kaempferol, biochanin A, theaflavin, and digallate—have demonstrated notable 

antiviral activity, particularly against RNA viruses such as murine norovirus 

(MNV) and feline calicivirus (FCV) [15]. These findings reinforce previous 

observations of the broad-spectrum antiviral potential of flavonoids, especially 

in targeting RNA virus replication mechanisms [16]. 

Anti-inflammatory Activity 

Inflammation is a complex biological response to infection, injury, or stress, 

often triggered by pathogenic microorganisms such as bacteria, viruses, and 

fungi. Medicinal plants have played a central role in traditional healthcare 

systems for managing inflammatory conditions [17]. In their response to 

environmental stressors and microbial attacks, plants produce a range of 

secondary metabolites with diverse biological effects, including pronounced 

anti-inflammatory activity [18]. The anti-inflammatory efficacy of several 

flavonoid aglycones—kaempferol, quercetin, apigenin, chrysin, diosmetin, 

luteolin, daidzein, genistein, and hesperetin—has been extensively studied. 

Among these, luteolin was found to exert the most potent inhibitory effects on 

inflammatory mediators such as nitric oxide (NO) and tumor necrosis factor-

alpha (TNF-α) [19,20]. The increasing application of phytomedicine in 

managing chronic inflammatory disorders such as rheumatoid arthritis (RA) 

and inflammatory bowel disease (IBD) highlights the growing recognition of 

plant-based therapies as accessible, cost-effective alternatives to conventional 

drugs [21,22]. These natural products represent a promising resource for the 

development of next-generation anti-inflammatory agents. 

Prediction Tools 

Quantitative Structure–Activity Relationship (QSAR) 

Quantitative Structure–Activity Relationships (QSARs) are mathematical 

models that establish correlations between the chemical structure of a 

compound and its biological activity [23]. These models rely on regression 

analysis, classification algorithms, and pattern recognition techniques to 
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quantitatively predict pharmacological outcomes. QSAR workflows typically 

involve several stages: data collection, calculation of molecular descriptors, 

feature selection, model building, validation, and prediction. Descriptor 

calculation—capturing physicochemical, electronic, and topological 

properties—is commonly performed using tools such as PaDEL-Descriptor or 

Dragon [25]. Feature selection algorithms like principal component analysis 

(PCA) and random forest are employed to extract the most informative 

molecular descriptors, minimizing redundancy and enhancing model accuracy. 

Predictive modeling is then carried out using statistical and machine learning 

approaches, including multiple linear regression (MLR), support vector 

machines (SVM), and artificial neural networks (ANN) [24,26]. Model 

performance is validated through internal (e.g., cross-validation) and external 

(e.g., test set) methods to ensure predictive reliability. 

SWISS Target Prediction 

SwissTargetPrediction is a web-based tool designed to identify probable 

biological targets for small molecules, leveraging both 2D and 3D similarity to 

known ligands [27]. The tool provides prediction scores ranging from 0 to 1, 

indicating the likelihood of interaction with a given target. In practical 

applications, this platform has been used to assess large compound 

datasets—such as 250 phytochemical structures—by predicting their top-

ranked molecular targets [28]. SwissTargetPrediction supports early-stage 

drug discovery by offering insights into the molecular targets of novel 

compounds, thus streamlining target validation and hit-to-lead optimization. 

The tool accepts input in the form of SMILES strings, returning ranked targets 

along with associated bioactivity data, and facilitating integration with 

experimental validation workflows [29]. 

PASS (Prediction of Activity Spectra for Substances) 

PASS (Prediction of Activity Spectra for Substances) is another widely 

used web-based tool that forecasts the biological activity profile of organic 

compounds based solely on their structural formula [30]. The system draws on 

a training dataset of over one million biologically active molecules and predicts 

more than 4,000 pharmacological and biochemical activities [31,32]. It assigns 

a probability value (Pa) for each predicted activity, indicating the confidence 

level of the prediction. PASS has been used to explore diverse biological 

functions, including anticonvulsant effects, neurotransmitter modulation, anti-

inflammatory properties, and activities targeting neurodegenerative conditions 

[33]. In antimicrobial research, PASS has helped to identify thymidine analogs 

with potent antibacterial activity exceeding their antifungal efficacy, thus 

demonstrating its value in guiding in vitro validation [34]. 

Machine Learning Model Development and Evaluation 

Machine learning (ML) is increasingly integral to predictive phytochemical 

research, providing powerful methods for modeling complex relationships 
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between molecular features and biological outcomes. These approaches are 

particularly valuable for elucidating mechanisms of action (MoA) and identifying 

drug targets for phytochemicals whose effects are not yet fully understood [35]. 

In recent studies, supervised algorithms such as k-nearest neighbors (kNN), 

support vector machines (SVM), random forests (RF), and extreme gradient 

boosting (XGB) have been utilized to develop predictive models for the 

anticancer activity of plant-derived compounds, particularly against breast 

cancer [36]. Among these, the kNN algorithm is favored for its simplicity and 

effectiveness in classifying compounds based on chemical similarity [37]. 

Random forest, an ensemble technique, aggregates outputs from multiple 

decision trees to enhance model stability and performance in both 

classification and regression tasks [38]. These ML models often employ 

molecular fingerprints like MACCS and Morgan2 for structural representation. 

By mapping molecular features to biological activity, ML techniques offer new 

avenues for phytochemical drug design, enabling predictions of efficacy and 

patient-specific responses. These innovations are transforming natural product 

research by accelerating lead compound identification and optimizing 

therapeutic development pipelines [39]. 

Conclusion 

This review underscores the critical role of computational approaches in 

advancing phytochemical research and drug discovery. The ability to predict 

the biological activities of phytochemicals based on their chemical structures 

has become a cornerstone of modern pharmacognosy and natural product 

chemistry. Advances in cheminformatics, molecular docking, and machine 

learning have significantly improved the identification of bioactive compounds, 

elucidation of mechanisms of action, and optimization of therapeutic potential. 

By integrating in silico predictions with experimental validation, researchers 

can streamline the drug discovery pipeline, reduce associated costs, and 

accelerate the development of plant-derived therapeutics. Despite these 

advances, key challenges remain—particularly in ensuring data quality, 

enhancing model interpretability, and capturing the complexity of biological 

systems. Moving forward, emphasis should be placed on refining predictive 

algorithms, improving the transparency of machine learning models, and 

expanding access to comprehensive, well-curated phytochemical and 

bioactivity datasets. 
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